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Introduction

Connectedness is a powerful tool in proofs of well-known results. Roughly
speaking, a connected metric space (or, a connected subspace of a metric
space) is one that is a “single piece”. This is a very difficult notion to be
formulated precisely. If we look at R\{0}, we would think of it consisting
of two pieces, namely, one of positive numbers and the other of negative
numbers. Similarly, if we consider an ellipse or a parabola, it is in a single
piece while a hyperbola has two distinct pieces. If we remove a single point
from a circle, it still remains as a single piece. An attempt to generalize
the above property leads to the concept of connected metric spaces.

There are many different concepts of connectedness; each one is important
in some area of study. We discuss connectedness, path connectedness,
polygonally connectedness and locally connectedness in the lecture.
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Connected Metric Spaces

Definition 1.

Let (X , d) be a metric space. X is said to be disconnected if there are
non-empty, disjoint, open sets U,V of X such that U ∪ V = X. That is, a
metric space which is a union of two disjoint non-empty open sets is called
disconnected.

The metric space X is said to be connected if it is not disconnected.

P. Sam Johnson Connectedness in Metric Space 3/54



Connected Metric Spaces

Theorem 2 (Characterizations of Connected Metric Spaces).

Let (X , d) be a metric space. Then the following are equivalent :

1. X is disconnected ;

2. There exist non-empty, disjoint, open sets U,V of X such that U ∪ V = X ;

3. There exist non-empty, disjoint, closed sets U,V of X such that U ∪ V = X ;

4. There exists a non-empty proper subset of X which is both open and closed ;

5. (An important characterization of connected spaces.) Every continuous function
f : X → {0, 1} is constant (where {0, 1} has the discrete topology).

6. There exist two disjoint proper non-empty subsets U and V such that U and V are both
open and closed in X and X = U ∪ V . In such a case, we say that the pair (U,V ) is a
disconnection of X .

7. There exist disjoint non-empty subsets U and V of X such that X = U ∪ V and
U ∩ V = U ∩ V = ∅.
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Connected Subsets of Metric Spaces

To understand what it means for a subset of a metric space to be
connected, we note that we can make a subset of a metric space into a
metric space in its own right, using the same measure of distance on the
subset that is used on the full metric space. That is, given a metric space
(X , d) and a subset A ⊆ X , we get the metric space (M, d ′), where
d ′(x , y) = d(x , y) for x and y in A. When we do this, we will refer to A as
a subspace of X rather than simply a subset. (In practice, we would
usually just write d and not d ′, we will use d ′ to make it clear whether we
are talking about the original metric space or a subspace.)

Theorem 3.

Let (X , d) be a metric space and A be a subset of X . A subset U of A is
open in the subspace (A, d ′) if and only if there is an open subset O in X
such that U = A ∩ O. A subset F of A is closed in the subspace (A, d ′) if
and only if there is a closed subset C in X such that F = A ∩ C.
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Connected Subsets

A subtlety is that if A is a subspace of a metric space X , then open means
with respect to A, not with respect to X . For example, consider
A = {0, 1} ⊆ R. Then A is disconnected: take U = {0} and V = {1}.
Here U and V are open in A even though they are not open in R. The
following result says that if A is a subset of a metric space X , then one
can, in fact, also check connectedness by working with sets that are open
in X .

Thus connectedness is a property that belongs properly to a metric space ;
it is not relative to any metric superspace that the space may sit inside.

Theorem 4.

Let (X , d) be a metric space and let A ⊆ X. Then A is disconnected in
the metric space (A, d ′) iff there are disjoint sets U,V of X that are open
in (X , d) and such that U ∩ A 6= ∅, V ∩ A 6= ∅ and A ⊆ U ∪ V .
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Connected Subsets

Theorem 5.

Let Z be a metric subspace of a metric space X and S ⊆ Z. Then S is a
connected subset of X iff S is a connected subset of Z .

If A = {0, 1} ⊆ R, then A is disconnected since we can take
U = (−1/2, 1/2) and V = (1/2, 3/2).

Theorem 6.

A subset A of a metric space X , endowed with the subspace topology, is
connected iff every continuous function f : A→ {0, 1} is a constant
function (where {0, 1} has the discrete topology called discrete two point
space).

P. Sam Johnson Connectedness in Metric Space 7/54



Connected Subsets

Let X be a set such that |X | ≥ 2 with discrete metric. Then X is not
connected.

Let A be a finite subset of a metric space X with |A| ≥ 2. Then A is
not connected.

Let A be any countable subset of a metric space X with |A| ≥ 2.
Then A is not connected. Indeed, let a, b ∈ A with a 6= b. Since the
interval (0, d(a, b)) is uncountable, there exists s ∈ (0, d(a, b)) such
that no point of X is of distance s from a. Then B(a, s) = B[a, s], so
it is both open and closed in X . But a ∈ B(a, s) and b /∈ B(a, s).
Note that B(a, s) = {x ∈ X : d(x , a) < s} and
B[a, s] = {x ∈ X : d(x , a) ≤ s}.
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Connected Subsets of R

On the real line, connected sets must be of a certain form. Recall that a
set X ⊆ R is an interval iff for any a, b ∈ X with a ≤ b, if a < x < b, then
x ∈ X .

The term “interval” includes bounded intervals of the form
[a, b], (a, b), [a, b), or (a, b], as well as infinite intervals of the form
(−∞, a], (−∞, a), (a,∞), [a,∞) or (−∞,∞). The empty set is also
considered to be an interval.

Any interval is a connected subset of R. In fact, intervals are the only
connected subsets of R with the usual topology.

Theorem 7.

If X ⊆ R, then X is connected iff it is an interval.
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Connected Sets

If we remove a point from the interior of an interval in R, we get a
disconnected set: although [0, 3] is connected, [0, 1) ∪ (1, 3] is
disconnected. This is not true in higher dimensions. For example,
D = {x ∈ R2 : ‖x‖ ≤ 1}, which is the unit disk in R2, is connected, but
also so is D\{(0, 0)}, which is the unit disk with the origin removed. This
is an important topological difference between R and Euclidean spaces of
higher dimension.
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Continuous Image of Connected Sets

It is easy to show that connectedness, like compactness, is preserved by
continuous functions. That is, the continuous image of a connected metric
space is connected.

Theorem 8.

Let (A, ρ) and (B, τ) be metric spaces, and suppose that f : A→ B be a
continuous function from A to B. If A is connected, then its image f (A) is
also connected.

Proof. Let f : g(X )→ {±1} be a continuous function on f (X ). Since f ◦ g : X → {±1} is
continuous and X is connected, it follows that f ◦ g is a constant on X . Hence f is a constant
on g(X ). Therefore g(X ) is connected.

Aliter : Assume that g(X ) is not connected. Then there exists nonempty proper subset

V ⊆ g(X ) which is both open and closed in g(X ). Since f is continuous, g−1(V ) and

g−1(g(X )\V ) are both nonempty, closed and open in X . This contradicts the hypothesis that

X is connected.
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Continuous Image of Connected Sets

As a consequence of the previous result, we see that connectedness is a
topological property. Connectedness is preserved by metric
homeomorphism.

We may use this fact to distinguish between some non-homeomorphic
spaces. For example, the space [0, 1] and (0, 1) (both with the subspace
topology as subsets of R) are not homeomorphic because removing any
point from (0, 1) gives a disconnected space, whereas removing an
end-point from [0, 1] still leaves an interval which is connected.
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Intermediate Value Theorem

Theorem 9.

Let f : [a, b]→ R be a continuous function. Assume that y is a point
between f (a) and f (b), that is, either f (a) ≤ y ≤ f (b) or f (b) ≤ y ≤ f (a)
holds. Then there exists x ∈ [a, b] such that f (x) = y.

The following converse of the Intermediate Value Theorem also holds.

Theorem 10.

Let X be a metric space. If every continuous function f : X → R has the
intermediate value property (i.e., if y1, y2 ∈ f (X ) and y is a real number
between y1 and y2, then there exists an x ∈ X such that f (x) = y), then
X is a connected metric space.
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Applications of Intermediate Value Theorem

Theorem 11 (Fixed Point Theorem).

Let f : [0, 1]→ [0, 1] be a continuous function. Then there exists a point
c ∈ [0, 1] such that f (c) = c.

Theorem 12 (Existence of n-th roots).

Let α ∈ [0,∞) and n ∈ N. Then there exists a unique x ∈ [0,∞) such
that xn = α.

Theorem 13.

Any polynomial with real coefficients and of odd degree has a real root.
That is, if p(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0, aj ∈ R for 0 ≤ j ≤ n,

an 6= 0 and n is odd, then there exists α ∈ R such that p(α) = 0.
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Connected Sets

It is certainly not true that the union of connected sets is connected. (Just
consider [1, 2] ∪ [3, 4].) However, if a collection of connected sets have a
non-empty intersection, then the union is connected. That is, fastening
together connected spaces “with an overlap” gives a connected space.

Theorem 14.

Let {Ai : i ∈ I} be a collection of connected subsets of a metric space X
with the property that for all i , j ∈ I we have Ai ∩Aj 6= ∅. Then A := UiAi

is connected. Deduce that if {Ai : i ∈ I} is a collection of connected
subsets of X such that

⋂
i∈I Ai 6= ∅, then the union

⋃
i∈I Ai is connected.

Theorem 15.

Let f be a real-valued continuous function defined on a metric space X .
At each point of a subset A of X , f (x) is either equal to +1 or to −1.
Then A is connected iff every such f is constant on A.
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Connected Sets

Theorem 16.

Let Xi (i = 1, 2, . . . , n) be connected non-empty metric spaces. Endow the
product P =

∏n
i=1 Xi with a product metric. Then P is connected iff each

Xi is connected, i = 1, 2, . . . , n.

Theorem 17.

Let A be a connected subset of a metric space X . Let A ⊆ B ⊆ A. Then
B is connected.
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Connected Components

One can start with a singleton set or any connected subset A of a metric
space X . Can we have a maximal connected subset M of X containing A?
Maximal in the sense that M cannot be a proper subset of any connected
subset of X . By Zorn’s lemma, such a maximal connected subset exists,
we call it as connected component, or simply a component.

Connected components partitiion the space in that they are mutually
disjoint and their union is the whole space ; they are always closed, but
need not be open.

How to find a connected component containing an element x ?

Let x ∈ X . The union C (x) of all connected subsets of X containing x is
a maximal connected subset of X .
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Connected Components

A metric space X is connected iff only connected component is X .

In a discrete metric space, every singleton set is both open and closed
and so has no proper superset that is connected. Therefore discrete
metric spaces have the property that their connected components are
their singleton subsets.

In an arbitrary metric spcae, there may be any number of singleton
connected components, but every other connected component (other
than singleton sets) must be uncountable.

Every element of a metric X lies in a unique connected component
and X is the disjoint union of connected components.

A metric space whose only connected subsets are singleton sets is
called totally disconnected.
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Connected Components

Theorem 18.

Let X be a metric space. Then

1. each connected subset of X is contained in exactly one connected
component ;

2. each nonempty connected subset of X that is both open and closed in
X is a connected component of X ;

3. each connected component of X is closed ;

4. the connected components of X are mutually disjoint ;

5. X is the union of its connected components.

We have seen that connected components are closed. Can they be open ? They are open if

there is only a finite number of connected components, but no in general. Consider

X = { 1
n

: n ∈ N} ∪ {0}, a subset of R. {0} is a connected component of X which is closed in

X , but it is open because every open interval containing 0 will contain 1
n

for some n ∈ N.
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Connected Components

1. The components of the space [0, 1] ∪ [2, 3] with the subspace
topology inherited from R, are the subspaces [0, 1] and [2, 3].

2. Components of Z (with the subspace topology for R) are the
singleton sets. Hence Z is totally disconnected.

3. Components of Q (with the subspace topology for R) are the
singleton sets. Hence Q is totally disconnected.

4. The components of X with the discrete metric are singleton sets.
Hence it is totally disconnected.

5. The Cantor set K is totally disconnected : any two elements a, b of K
with a < b, there is some x ∈ R\K , so that a and b do not belong to
the same connected component of K .
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Some Examples

Proposition 19.

Sn := {x ∈ Rn+1 : ‖x‖ = 1} is connected.

Proof : The strategy is to show that Sn is the union of the closed upper and lower hemispheres,
each of which is homeomorphic to the closed unit disk in Rn and to observe that the
hemispheres intersect. Let Sn

+ := {x ∈ Rn+1 : xn+1 ≥ 0} be the upper hemisphere. Let
Dn := {u ∈ Rn : ‖u‖ ≤ 1}. Note that Dn is convex and hence connected. We claim that Dn is
homeomorphic to Sn

+. Consider the map f+ : Dn → Sn
+ given by

f+(u) = (u1, . . . , un,
√

1− ‖u‖2). Clearly, f+ is bijective and continuous. Since f+ is a bijective
continuous map of a compact space to a metric space, it is a homeomorphism. In any case, Sn

+
being the continuous image of the connected set Dn, is connected. Similarly, we show that the
lower hemisphere Sn

− := {x ∈ Rn+1 : xn+1 ≤ 0} is the image of f− : Dn → Sn
− given by

f−(u) = (u1, . . . , un,−
√

1− ‖u‖2). Clearly, the intersection Sn
+ ∩ Sn

− = {x ∈ Rn+1 : xn+1 = 0}
is nonempty. Hence we conclude that Sn is connected
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Some Examples

1. Empty set is connected, in fact vacuously so as it lacks non-empty
subsets. Consequently it is not disconnected.

2. Rusual is connected, as is Rn
usual for all n ∈ N.

3. The unit circle in R2 is connected.

4. R2\{(0, 0)} with its usual subspace topology is connected. Note that
R\{0} with its usual subspace topology is disconnected.

5. R2\{the x-axis} is connected.

6. If A ⊆ R2 is countable, then R2\A is connected. In particular, R2\Q2

is connected. Note that it is the set of points such that at least one
coordinate is irrational.

7. More generally, let n > 1 and let A be a countable subset of Rn.
Then Rn\A is connected.

8. The discrete space X with more than one point is disconnected.

9. The annulus {x ∈ R2 : 1 < ‖x‖ < 2} is connected. [Hint: Continuous
image of a connected set is connected.]
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Exercises

Show that the circle {(x , y) ∈ R2 : x2 + y2 = 1} is connected.

Show that the following subsets of R2 are not connected:

(a) {(x , y) ∈ R2 : xy 6= 0}.
(b) {(x , y) ∈ R2 : x2 − y2 = 1}.
(c) {(x , y) ∈ R2 : x ∈ Q and y 6∈ Q}.

Show that the set GL(2,R) is not connected.

The O(n,R) of orthogonal matrices of order n is not connected.

Show that the set SO(2,R) := {A ∈ O(2,R) : detA = 1} is connected. [Hint: Write
down all elements of SO(2,R) explicitly.]

Let X , Y be metric spaces. Assume that X is connected and that f : X → Y is
continuous. Show that the graph

Γf := {(x , y) ∈ X × Y : y = f (x), x ∈ X}

is a connected subset of X × Y (with respect to the product metric).

Let A be a nonempty connected subset of R. Assume that every point of A is rational.
What can you conclude?
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Exercises

Find all continuous functions f : R→ R which take irrational values only at rational
points and not at irrational points.

Let f , g : [0, 1]→ R be continuous functions. Assume that f (x) ∈ [0, 1] for all x and
g(0) = 0 and g(1) = 1. Show that f (x) = g(x) for some x ∈ [0, 1].

Let A be the union of the following subsets of R2:

S := {(x , y) : x2 + y2 = 1}
L1 := {(x , y) : x ≥ 1 and y = 0}
L2 := {(x , y) : x ≤ −1 and y = 0}
L3 := {(x , y) : y ≥ 1 and x = 0}
L4 := {(x , y) : x ≤ −1 and x = 0}.

Show that A is connected subset of R2. (Draw a picture of A!)
Can you generalize this exercise?

Let X be a (metric) space. Let S and Li (i ∈ I ) be connected subsets of X . Assume that
S ∩ Li 6= ∅. Show that S ∪ (Ui∈ILi ) is a connected subset of X . (This is a generalization
of the last exercise!)
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Exercises

We say that f : X → Y is a locally constant function if for each x ∈ X , there exists an
open set Ux containing x with the property that f is a constant on Ux . If X is connected,
then any locally constant function is constant on X .

Let U be an open connected subset of Rn and f : U → R be a differentiable function such
that Df (p) = 0 for all p ∈ U. Then f is a constant function.

Let f : X → R be a nonconstant continuous function on a connected (metric) space.
Show that f (X ) is uncountable and hence X is uncountable.

Let (X , d) be a connected metric space. Assume that X has at least two elements. Then
|X | ≥ |R|.
Let (X , d) be an unbounded connected metric space. Let x ∈ X and r > 0 be arbitrary.
Show that there exists y ∈ X such that d(x , y) = r .
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Exercises

Which of the following sets are connected subsets of R2?

(a) {(x , y) ∈ R2 : x2 + y2 = 1}.
(b) {(x , y) ∈ R2 : y = x2}.
(c) {(x , y) ∈ R2 : xy = 1}.
(d) {(x , y) ∈ R2 : xy = c for some fixed c ∈ R}.
(e) {(x , y) ∈ R2 : (x2/a2) + (y2/b2) = 1} for some a > b > 0.

Show that a circle or a line or a parabola in R2 is not homeomorphic to a hyperbola.

Show that R is not homeomorphic to R2. [Hint: Observe that if f : X → Y is a
homeomorphism and if f (A) = B for a subset A ⊆ X , the the restriction of f to X\A is a
homeomorphism of X\A to Y \B.]

Let X be the union of axes given by xy = 0 in R2. Is it homeomorphic to a line, a circle, a
parabola or the rectangular hyperbola xy = 1?

Let A ⊆ X . What does it mean to say that the characteristic function χA continuous?

Give an example of a sequence (An) of connected subsets of R2 such that An+1 ⊆ An for
n ∈ N, but ∩nAn is not connected.

Show that no nonempty open subset of R is homeomorphic to an open subset of R2.
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Path Connected

Definition 20.

Let X be a metric space. A path in X is a continuous map γ : [0, 1]→ X.
If γ(0) = x and γ(1) = y, then γ is said to be a path joining the points x
and y or simply a path from x to y. We say that x is path connected to y
if there is a path γ such that γ(0) = x and γ(1) = y.

Every path is a uniformly continuous function, and its image is connected
and compact.
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Path Connected

1. Any point x ∈ X is path connected to itself by a constant path
γ(t) = t, for all t ∈ [0, 1].

2. If x is path connected to y , then y is path connected to x . Define
σ(t) := γ(1− t) for t ∈ [0, 1] which connects y to x . (The path σ is
called the reverse path of γ.)

3. Joining two paths into a single path : If x is path connected to y
and y is path connected to z in X , then x is path connected to z .
More precisely, let γi : [0, 1]→ X , i = 1, 2, be two paths such that
γ1(1) = γ2(0). Then there exists a path γ3 : [0, 1]→ X such that
γ3(0) = γ1(0), γ3(1/2) = γ1(1) = γ2(0) and γ3(1) = γ2(1). We can
consdier

γ3(t) :=

{
γ1(2t) if t ∈ [0, 1/2]

γ2(2t − 1) if t ∈ [1/2, 1].

P. Sam Johnson Connectedness in Metric Space 28/54



Path Connected

The idea that any two points in a metric space can be joined by an
unbroken curve in the space is perhaps a more intuitive idea of
connectedness than the one we have adopted – at least it might be if we
were not aware of space-filling curves. It is, however, a stronger concept
than connectedness.

Definition 21.

A metric space X is said to be path connected if for any pair of points x
and y in X , there exists a path γ : [0, 1]→ X such that γ(0) = x and
γ(1) = y.

Theorem 22.

A metric space is path connected iff there exists a point a ∈ X which is
path connected to any x ∈ X.
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Examples of Path Connected Metric Spaces

1. Any interval in R is path connected.

2. The space Rn is path connected. Any two points can be joined by a line segment:
γ(t) := x + t(y − x), for 0 ≤ t ≤ 1. We call this path γ a linear path.

3. Any convex set in a normed linear space is path connected. Hence conclude that any open
or closed ball in normed linear space is connected.

4. For every r > 0, the circle Cr := {(x , y) ∈ R2 : x2 + y2 = r2} is path connected.

5. The set {(x , y) ∈ R2 : x ≥ 0 and x2 − y2 = 1} is path connected.
The hyperbola {(x , y) ∈ R2 : x2 − y2 = 1} is not path connected.

6. The parabola {(x , y) ∈ R2 : y2 = x} is path connected.

7. The union of the two parabolas {(x , y) ∈ R2 : y2 = x} and {(x , y) ∈ R2 : y = x2} is path
connected.

8. The union of the two parabolas {(x , y) ∈ R2 : y2 = x} and {(x , y) ∈ R2 : y2 = −x} is
path connected.

9. A non-empty intersection of connected subsets of a metric space need not be connected.
The unit circle {z ∈ C : |z| = 1} and the ellipse {z ∈ C : 4(Re(z))2 + (Im(z))2 = 1} are
connected in C. But their intersection is the two-point set {i ,−i} which is disconnected.
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Path Connected

1. Let A and B be path connected subsets of a metric space with
A ∩ B 6= ∅. Then A ∪ B is path connected.

2. Any continuous image of a path connected space is path connected,
that is, if f : X → Y is continuous and X is path connected, then
f (X ) is path connected. In particular, path connectedness is a
topological property.

3. Assume that a path γ : [0, 1]→ Rn connects a point
x ∈ B(0, 1) ⊆ Rn to a point y with ‖y‖ > 1. Then there exists
t ∈ [0, 1] such that ‖γ(t)‖ = 1.
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Path Connected

Proposition 23.

Rn\{0} is path connected if n ≥ 2.

Proof : Let p = e1 = (1, 0, . . . , 0) ∈ Rn and a = e2 = (0, 1, 0, . . . , 0) ∈ Rn. Let x ∈ Rn be any

nonzero vector. Consider the line segments [p, x] and [x , q]. We claim that at least one of them

does not pass through the origin. If false, then (1− t)p + tx = 0 = (1− s)q + sx for some

0 ≤ s, t ≤ 1. From these equations, it follows that (1− t)p = −tx and (1− s)q = −sx . Thus p

and q are scalar maultiples of the same vector and hence they are linearly dependent. This

contradiction shows that our claim is true. Note that by a similar reasoning, the line segment

[p, q] does not pass through the origin. Now consider the ’path’ [x , p] or the path [x , q] ∪ [q, p]

connecting x and p, not passing through the origin. Thus any nonzero x ∈ Rn is path connected

to p and hence Rn\{0} is path connected.
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Path Connected

1. The unit sphere Sn := {x ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1} is path
connected. The sphere Sn is the continuous image of the path
connected space Rn+1\{0}.

2. The annulus {x ∈ R2 : 1 ≤ ‖x‖ ≤ 2} is path connected. How about
{x ∈ R2 : 1 < ‖x‖ < 2}?
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Path Connected

Theorem 24.

Let X be a path connected metric space. Then X is connected.

Proof. Let f : X → {±} be continuous. Fix a ∈ X . Let x ∈ X be
arbitrary. Since X is path connected, there exists a path γ : [0, 1]→ X
such that γ(0) = a and γ(1) = x . The function f ◦ γ : [0, 1]→ {±1} is
continuous on the connected set [0, 1] and hence must be a constant. In
particular, f (a) = f ◦ γ(0) = f ◦ γ(1) = f (x). Since x ∈ X is arbitrary, we
have shown that f is a constant function. Therefore, X is connected.
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Connected but not path connected

Example 25 (Topologist’s Sine Curve-I).

Consider

X := {(x , sin(π/x)) : 0 < x ≤ 1} ∪ {(0, y) : −1 ≤ y ≤ 1} = A ∪ B (say.)

Then A is connected and X = A∪B = A, so X is connected. But X is not
path connected because no point of B is path connected to any point of A.
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Connected but not path connected

Example 26 (Topologist’s Sine Curve-II).

Consider

X := {(x , sin(1/x)) : x > 0} ∪ {(x , 0) : −1 ≤ x ≤ 0} = A ∪ B (say.)

Clearly each of A and B is connected. Also, the point (0, 0) is a limit
point of the set A and hence A1 = A ∪ {(0, 0)} ⊆ A is connected. Since B
and A1 have a point in common, their union X is connected. But X is not
path connected because there is no path connecting (1/π, 0) and (0, 0).
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Path Connected

The following result is a typical application of connectedness argument and also provides a large
class of path connected spaces.

Theorem 27.
Let U be an open connected subset of Rn. Then U is path connected.

One could prove the result in a more general setting.

Theorem 28.
Let X be a connected metric space. Assume that each point of X has an open set U such that
x ∈ U and U is path connected. Then X is path connected.

Exercises 29.
1. Give at least two paths in R2 that connect (−1, 0) and (1, 0) and pass through (0, 1).

2. Let A be a connected subset in Rn and ε > 0. Then the ε-neighbourhood of A defined by
Uε(A) := {x ∈ Rn : dA(x) < ε} is path connected.
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Polygonally Connected

In a linear space, there are other forms of connectedness available to us.
The simplest and strongest is convexity. But subsets of a linear space that
are not convex may still be connected in a way that is, in general, stronger
than pathwise connectedness. They may be polygonally connected.

Let S be a subset of a linear space S and a, b ∈ S . For any n ∈ N, an
n-tuple (c1, c2, . . . , cn) of points of S is called a polygonal connection from
a to b in S if c1 = a and cn = b and for each i ∈ {2, 3, . . . , n}, the line
segment {(1− t)ci−1 + tci : t ∈ [0, 1]} is included in S .
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Polygonally Connected

Definition 30.

A vector space S is said to be polygonally connected if for each a, b ∈ S,
there exists a polygonal connection from a to b in S.

All convex subsets of a linear space are polygonally connected.

The non-convex subset of C given by

S = {z ∈ C : |z − 1| ≤ 1} ∪ {z ∈ C : |z + 1| ≤ 1}

is polygonally connected because any two points that cannot be
joined by a line segment in S can be joined by two such line segments
meeting at the origin.

The set {z ∈ C : |z | = 1} is pathwise connected but not polygonally
connected.
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Polygonally Connected

Theorem 31.

Every polygonally connected subset of a normed linear space X is path
connected and therefore connected.

Theorem 32.

Let U be an open connected subset of a normed linear space X . Then U is
polygonally connected and therefore path connected.

Example 33.

A closed connected subset of a normed linear space need not be even path
connected. An example is the closure in R2 of the graph of the function
x 7→ sin( 1

x ) defined on (0,∞).
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Exercises

Show that a ball of a connected metric space need not be connected.

Suppose X is a metric space. Show that X is disconnected iff there is
a non-emtpy proper subset S of X such that S ∩ Sc = ∅.
Give an example to show that the interior of a connected subset of a
metric space need not be connected.

Suppose X is a metric space and the number of connected
components is finite. Show that each of them is both open and closed
in X .

Suppose S is proper closed subset of [0, 1] and {0, 1} ⊆ S . Show that
each connected component of [0, 1]\S is an open interval (a, b) with
a, b ∈ S .

Is there any injective continuous funtion R2 to R?
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Exercises

Show that the subset

S = {(0, 0)} ∪ {(x1, x2) ∈ R2 : 0 < x2 ≤ x2
1}

of R2 is path connected but not polygonally connected.

Suppose X is a normed linear space and C is a chained collection of
convex subsets of X . Show that ⋃

C∈C
C

is polygonally connected.
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Locally Connected

We now consider topological spaces.

Recall that each topological space X is the set-theoretic disjoint union of
its connected components, but in general (e.g. for X = Q) fails to be the
topological disjoint union. The problem is that the connected components
in general are not open in X . We will seek to right this wrong here, by
looking at a specific class of topological spaces.

Definition 34.

A topological space X is said to be locally connected if

for each open subset U ⊆ X and x ∈ U, there exists a connected
open subset V of X such that x ∈ V ⊆ U.

Note that since U is open in X , any subset V ⊆ U is open in U if and only
if it is open in X . In such instances, we will sometimes abuse our language
and say V is open without specifying the ambient space.
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Locally Connected

One useful way to judge if a space is locally connected is as follows.

Proposition 35.

A topological space X is locally connected if and only if it has a basis all
of whose elements are connected.

The key property we wish to prove is:

Theorem 36.

If X is locally connected, then every connected component of X is open in
X . Hence X is the topological disjoint union of its connected components.
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Locally Connected

Take our favourite topologist’s sine curve X = A ∪ B where:

A = {0} × [0, 1] and B = {(x , sin(1/x)) : 0 < x ≤ 1}.

We saw that X is connected. However it is not locally connected since for
any 0 < ε < 1, the ε-neighbourhood of the origin contains more than one
(in fact infinitely many!) connected components:

This also shows that connected spaces are generally not locally
connected.

Corollary 37.

A locally connected space X is totally disconnected if and only if it is
discrete.
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Properties of Locally Connected Spaces

Similar to the case of locally compact, the following result explains why
the property is local.

Proposition 38.

Let X be a topological space.

If U ⊆ X is open, and X is locally connected, then so is U.

If X = ∪iUi is a union of open subsets and each Ui is locally
connected, then so is X .

It is not true that if f : X → Y is continuous and X is locally connected,
then so is f (X ). Indeed, let X = Q with the discrete topology and Y = Q
as a subspace of R. The identity map on the underlying set Q then gives a
surjective continuous map but Y is not locally connected. [Recall that if
we replace locally connected with connected, then this is true.]
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Properties of Locally Connected Spaces

Closed subsets of locally connected spaces are not locally connected in
general. For example, take X = R and Y = {0} ∪ { 1

n : n = 1, 2, . . .}.
Then Y is closed in X , but there is no connected open subset of 0 in Y .

Proposition 39.

If X and Y are locally connected topological spaces, then so is X × Y .

This does not hold for infinite products. For example, let X = {0, 1}N ,
where {0, 1} is given the discrete topology. We claim that X is totally
disconnected.

Indeed, suppose some connected component Y contains (xn), (yn) ∈ X
where xn 6= yn for some n. Then projecting to the n-th component gives a
surjective map πn : Y → {0, 1} which violates the theorem that the
continuous image of a connected set is connected. Hence, X is a totally
disconnected space which is not discrete (since it is compact by Tychonoff
theorem), so it cannot be locally connected.
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Examples of Locally Connected Spaces

1. Any discrete set is locally connected since we can take V = {x}.
2. Since the open intervals in R are connected, R has a basis of

connected open subsets and is thus locally connected.

3. Hence Rn is also locally connected, as is any open subset of Rn.

4. Let X = [0, 1]; then X is connected and locally connected. For
example, at 0, any open subset must contain [0, ε) for some ε > 0,
which is open in X .

5. Q is totally disconnected yet not discrete, so it is not locally
connected.
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Locally Path Connected Spaces

Correspondingly, we have locally path connected spaces.

Definition 40.

A topological space X is locally path connected if

for each open subset U ⊆ X and x ∈ U, there exists a path connected
open subset V of X such that x ∈ V ⊆ U.

The earlier properties all carry over since the proofs can be replicated by
replacing path connected with connected whenever it appears in the notes.

Proposition 41.

A topological space X is locally path connected if and only if it has a basis
all of whose elements are connected.
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Locally Path Connected Spaces

Theorem 42.

If X is locally path connected, then every path connected component of X
is open in X . Hence X is the topological disjoint union of its path
connected components.

Proposition 43.

Let X be a topological space.

If U ⊆ X is open, and X is locally path connected, then so is U.

If X = ∪iUi is a union of open subsets and each Ui is locally path
connected, then so is X .

Proposition 44.

If X and Y are locally path connected, then so is X × Y .
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Locally Path Connected Spaces

1. Any discrete set is locally path connected since we can take V = {x}.
2. Since the open intervals in R are path connected, R has a basis of

path connected open subsets and is thus locally path connected.

3. Hence Rn is also locally path connected, as is any open subset of Rn.

4. Let X = [0, 1]; then X is path connected and locally path connected.
For example, at 0, any open subset must contain [0, ε) for some
ε > 0, which is open in X .

5. Q is totally disconnected; since each connected component is a
disjoint union of path components, we see that the only path
components of Q are {x}. Hence, Q is not locally path connected,
for if it were, Q would have to be the disjoint union of all {x} and
hence discrete.
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Locally Path Connected Spaces

Let us see if we can find counter-examples similar to those for local
connectedness.

1. Not true: if X is path connected, then it is locally path connected. Take the circle
S1 = {(x , y) ∈ R2 : x2 + y2 = 1} and consider an infinite sequence of wheel spokes:
X0 = [0, 1]× {0} and: Xn = {(t cos π

n
, t sin π

n
) : n

n+1
≤ t ≤ 1}, for n = 1, 2, . . ..

Now take X := S1 ∪
(
U∞n=0Xn

)
:

Now there is no path connected open subset V such that (0, 0) ∈ V ⊆ NX ((0, 0), 1
2

). On
the other hand, X is clearly path connected.

2. Not true: if f : X → Y is continuous and X is locally path connected, then so is Y .
Same example as before: let X = Q with the discrete topology and Y = Q as a subspace
of R. Then the identity map on Q is continuous and X is locally path connected, but
f (X ) = Y is not.

3. Not true: a product of infinitely many locally path connected spaces is locally path
connected.
Same example as before: X = {0, 1}N, where {0, 1} is given the discrete topology. We
saw earlier that X is totally disconnected, so the components (and hence path
components) are singleton sets. On the other hand, X is not discrete, so it cannot be
locally path connected.
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Relationship Between Locally Connected & Locally Path
Connected

Finally, let us examine the relationship between the two notions. Since
path connected sets are connected, we have:

1. A locally path connected space is also locally connected.
The converse is not true.

2. A locally connected space is not locally path connected in general.
This is hard: one can find a counter-example in Munkres, Topology, 2nd edition, page
162, chapter 25, exercise 3.

3. If X is connected and locally path connected, then it is path connected.
Pick any path component Y of X . Since X is locally path connected, Y is open in X .
The complement X\Y is a union of path components, each open in X , so it is open too.
Thus Y is a clopen (both open and closed) subset of X and we must have Y = X .
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